
Fall 2015, MATH-566
Matroids I

Definition: Let E be a finite set and F ⊆ 2E . A set system (E,F) is called a matroid if it satisfies

(M1) ∅ ∈ F ;

(M2) If X ⊆ Y ∈ F then X ∈ F ;

(M3) If X,Y ∈ F and |X| > |Y |, then there is x ∈ X \ Y with Y ∪ {x} ∈ F .

Elements in F are called independent sets.

1: Let E be any finite set and k ≥ 0. Let F = {F ⊆ E : |F | ≤ k}. Show that (E,F) is a matroid.
(It is called uniform matroid.)

Solution: All three axioms are clearly satisfied.

2: Let E be the set of columns of a matrix A over some field.
Let F = {F ⊆ E : the columns in F are linearly independent}. Show that (E,F) is a matroid.
(It is called linear or vector matroid.)

Solution: (M1) and (M2) are clearly satisfied. (M3) is well known from linear algebra.

3: Let E be the set of edges of an undirected graph G. Let F = {F ⊆ E : (V (G), F ) is a forest}. Show
that (E,F) is a matroid. (It is called graphic or cycle matroid.)

Solution: (M1) and (M2) are clearly satisfied. For (M3), consider what is the number of connected
components in X and Y . Since the one for Y is smaller, there must be and edge in X connecting two
components in Y .

Maximal independent sets in F are called bases (see linear matroid).

Minimal dependent sets (means not independent) in F are called circuits or cycles (see graphic matroid).

Motivation for Matroids
Let (E,F) be a matroid. Let c : E → R+. Find X ∈ F such that

∑
e∈X c(e) is maximized.

Notice that this would be the same as maximum cost spanning tree for graphic matroid.

(E,F) being a matroid ⇒ greedy algorithm works

1. Sort E such that c(e1) ≥ c(e2) ≥ · · · ≥ c(em)

2. Let F = ∅

3. for i in 1 to m

4. if {ei} ∪ F ∈ F then F := F ∪ {ei}.

4: Show that the greedy algorithm is correct. (Hint: similar to Kruskal’s algorithm - consider optimal
F ? and investigate the difference of F and F ?.)

Solution: Let F be a1, a2, . . . , am and F ? be b1, b2, . . . , bn. Assume c(a1) ≥ c(a2) ≥ · · · and c(b1) ≥
c(b2) ≥ · · · . Let k be the smallest such that c(ak) < c(bk) (if there is no such k, F is also optimal).
Consider A = {a1, . . . , ak−1} and B = {b1, . . . , bk}. Application of (M3) on A and B gives b ∈ B such
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that A∪ {b} is independent, this contradicts the choice of ak in the greedy algorithm instead of choosing
b.

5: Let (E,F) satisfy (M1) and (M2). Suppose that the greedy algorithm works for all c : E → R+.
Show that (E,F) is a matroid.

Solution: Let X,Y ∈ F and |X| > |Y |. Assign cost

c(e) =


1 + ε if e ∈ Y

1 if e ∈ X \ Y
0 otherwise

Where 0 < ε < |Y |. The greedy algorithm picks all elements from Y . But X is independent and
c(X) > c(Y ). Since the greedy algorithm works, it must also pick some x ∈ X \ Y .

6: Show that all bases of a matroid have the same cardinality.

Solution: ⇒ If bases B1 and B2 have different cardinality, then (M3) gives contradiction with maxi-
mality of the smaller one.

Theorem 13.9 Let E be a finite set and B ⊆ 2E . B is the set of bases of some matroid iff B satisfies

(B1) B 6= ∅;

(B2) For any B1, B2 ∈ B and any x ∈ B1 \B2 there exists y ∈ B2 such that (B1 \ {x}) ∪ {y} ∈ B.

7: Show that matroids satisfy (B1) and (B2).

Solution: Easy consequence of (M2) and (M3).

8: Show that if B satisfies (B1) and (B2), then all bases in B have the same cardinality.

Solution: Let |B1| > |B2| and |B1∩B2| is maximized. Use of (B2) gives a contradiction with maximality
of |B1 ∩B2|.

9: For B satisfying (B1) and (B2) find a matroid (E,F).

Solution: Let
F = {F ⊆ E : F ⊆ B for some B ∈ B}.

By (B1), (M1) and (M2) are satisfied. Verify (M3). Let X,Y ∈ F with |X| > |Y |. If Y ⊆ X, then
any element of X will do. Otherwise suppose X ∈ B1 and Y ∈ B2, where |B1 ∩ B2| is maximized. If
B2 ∩ (X \ Y ) 6= ∅, then Y is easy to extend.
Assume B2 ∩ (X \ Y ) = ∅. Then

|B1 ∩B2|+ |Y \B1|+ |(B2 \B1) \ Y | = |B2| = |B1| ≥ |B1 ∩B2|+ |X \ Y |

Observe |X \ Y | > |Y \X| ≥ |Y \B1|. Hence (B2 \B1) \ Y 6= ∅. Pick x ∈ (B2 \B1) \ Y and use (B2) to
get a contradiction with |B1 ∩B2| being maximized.
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