Fall 2015, MATH-566

Matroids I

Definition: Let E be a finite set and $\mathcal{F} \subseteq 2^E$. A set system (E, \mathcal{F}) is called a **matroid** if it satisfies

(M1) $\emptyset \in \mathcal{F};$

(M2) If $X \subseteq Y \in \mathcal{F}$ then $X \in \mathcal{F}$;

(M3) If $X, Y \in \mathcal{F}$ and |X| > |Y|, then there is $x \in X \setminus Y$ with $Y \cup \{x\} \in \mathcal{F}$.

Elements in \mathcal{F} are called **independent sets**.

1: Let *E* be any finite set and $k \ge 0$. Let $\mathcal{F} = \{F \subseteq E : |F| \le k\}$. Show that (E, \mathcal{F}) is a matroid. (It is called *uniform matroid*.)

2: Let *E* be the set of columns of a matrix *A* over some field. Let $\mathcal{F} = \{F \subseteq E : \text{ the columns in } F \text{ are linearly independent}\}$. Show that (E, \mathcal{F}) is a matroid. (It is called **linear** or **vector matroid**.)

3: Let *E* be the set of edges of an undirected graph *G*. Let $\mathcal{F} = \{F \subseteq E : (V(G), F) \text{ is a forest}\}$. Show that (E, \mathcal{F}) is a matroid. *(It is called graphic or cycle matroid.)*

Maximal independent sets in \mathcal{F} are called **bases** (see linear matroid). Minimal dependent sets (means not independent) in \mathcal{F} are called **circuits** or **cycles** (see graphic matroid).

Motivation for Matroids

Let (E, \mathcal{F}) be a matroid. Let $c : E \to \mathbb{R}_+$. Find $X \in \mathcal{F}$ such that $\sum_{e \in X} c(e)$ is maximized. Notice that this would be the same as *maximum cost spanning tree* for graphic matroid. (E, \mathcal{F}) being a matroid \Rightarrow greedy algorithm works

- 1. Sort E such that $c(e_1) \ge c(e_2) \ge \cdots \ge c(e_m)$
- 2. Let $F = \emptyset$
- 3. for i in 1 to m
- 4. if $\{e_i\} \cup F \in \mathcal{F}$ then $F := F \cup \{e_i\}$.

4: Show that the greedy algorithm is correct. (Hint: similar to Kruskal's algorithm - consider optimal F^* and investigate the difference of F and F^* .)

5: Let (E, \mathcal{F}) satisfy (M1) and (M2). Suppose that the greedy algorithm works for all $c : E \to \mathbb{R}_+$. Show that (E, \mathcal{F}) is a matroid.

6: Show that all bases of a matroid have the same cardinality.

Theorem 13.9 Let *E* be a finite set and $\mathcal{B} \subseteq 2^E$. \mathcal{B} is the set of bases of some matroid iff \mathcal{B} satisfies (B1) $\mathcal{B} \neq \emptyset$;

- (B2) For any $B_1, B_2 \in \mathcal{B}$ and any $x \in B_1 \setminus B_2$ there exists $y \in B_2$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.
- 7: Show that matroids satisfy (B1) and (B2).
- 8: Show that if \mathcal{B} satisfies (B1) and (B2), then all bases in \mathcal{B} have the same cardinality.
- **9:** For \mathcal{B} satisfying (B1) and (B2) find a matroid (E, \mathcal{F}) .